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PLASMA POLING OF POLY(VINYLIDENE FLUORIDE):
PIEZO-AND PYROELECTRIC RESPONSE

J. E. McKINNEY, G. T. DAVIS, M. G. BROADHURST
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234

ABSTRACT | |

A plasma poling technigue and its use with polyvinylidene fluoride
(PVDF) fiims is described. Specimens of biaxially drawn (blow extruded)
PVNF containing both Form I (8) and Form Il (a) crystals were poled under
various conditions in a plasma field while the charaing current was monitored
to determine the polarization. Subsequentlv, both piezo- and pyroelectric
activity were measured in order to evaluate their maanitudes with respect
to the remnant polarization (that is, the polarization remaining gfter
:returninq the annlied field to zero). The results are shown to be in
‘reasonable quantitative aareement with the oredictioné of a model of

PVDF consistina of a mixture of preferehtiallv aligned crvstals in randomized

»

amorphous material,
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INTRODUCTION
Polyvinylidene fluoride (PVDF) is a unique transducer material because of

its toughness, flexibility, low density, low mechanical impedance and ease of

fabrication, To achieve optimum performance from this material, one would like
to have a broad understanding of mechanisms underlying its activity. In previous

papers we have shown evidence that application of large electric fields to PVDF

b nii b

films reorients molecular dipoles in the crystal phase [1] and that the response

to thermally or mechanically induced strains of preferentially oriented, polar
crystals of PVYDF can account quantitatively for the piezoelectric and pyroelectric

activity of PVDF films.[2] In this paper we report the results of some poling

experiments (3] where we measured the remnant polarization {that is, the polari-
zation remainina after returning the apolied field to zerolresulting from anpli-

cation of large electric fields and show the relationship between this polarization

PpOp- e p———— R

and ovroelectric data. This comparison further supports a mode) where oriented
polar crvstals are the basis of the transducer effects in PVDF,

Day and coworkers [4] carried out svstematic studies with 6 .m biaxiallv
oriented PVDF films for a variety of oolarization conditions (time, electric field
intensity and temperature) and measured the resultant pyvroelectric activity.

Thev concluded that activity increased with the intensitv and duration of the
nolarizing field, and with the polarizing temperature. They also found that the
activity becomes more uniform across the film thickness at longer times and higher
fields and temperature, When non-uniform, the activity was greatest at the side

of the film which was positive during polarization, in accord with other reports{5-7].

Southnate poled PVDF at room temperature and measured both the remnant
polarization and pv. nelectric coefficient, using a corona poling method (8],

Of the films used : to 16 um thick), the largest effects were observed with
the thinnest films. Southgate's data showed that the ovroelectric coefficient

increases roughly proportional to the remnant polarization and that the
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polarization increases with the maanitude of the poling field. He reported oolari-

zations as high as 9 uC/cm< which represents about 75% of the maximum polarization

obtainable with a 60% crystalline (Form !) specimen, (The calculated single

crystal polarization for Form [ is about 20 .C/cm~ if one includes enhancement

of the vacuum moment by the reaction field of the solid surroundings).
The pyroelectric activty of PVDF was studied by Blevin [9] as a function

of poling time and temperature using 6 um thick films and a boling field of 1

MV/cm, Blevin concluded that the pyroelectric coefficient increases faster

at higher poling temperatures and further that the ultimate polarization depends

only on the electric field and does not depend on coling temperature.

Poling of 40 to 200 um thick films of PVDF was achieved bv Tamura and co-

workers [10] over a wide temperature range. They found the remnant polarization

decreases with poling temperature from maximum values at room temperature to

zero near the glass transition temperature (-40° C). These results sugaest that

gorientation of the polar :-rostal segments is facilitated by mobiiity in the inter-
crystalline amorphous phase. Tamura et. al, showed that well formed hysteresis

curves could be obtained with PVDF by measuring the charye on the electrodes

due to a sinusoidally varying voltage. The critical field for developing a remnant

polarijzation was found to decrease with an increase in temperature. We suppose

from the above discussion of time effects that the magnitude of the field needed

to produce a given remnant polarization increases with increasing frequency also.

That is, we expect the hysteresis looo to close with increasing frequency.
Similar hysteresis curves have been reported by Kepler [11] and observed

in our laboratory., Oshiki and Fukada [12] have published a hysteresis curve for

the piezoelectric stress-coefficient e,, vs applied field, We expect this

curve to closely follow the polarization-field hysteresis curves thouah detailed

comparisons of this kind have yet to be reportad,.
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Murayama and co-warkers [13] studied plezoelectricity in uniaxially ariented 3}
phase PVDF polarized at temperatures from 25'C to 110°'C an:’ thev reportel d,. was
proportional to polarizing field without the threshold field expected from the
hvsteresis results.

The connection between polarization in FVDF and racrientation of molecular
dipoles in the crystal phase is becoming documented with IR [1,8,10, 14-18 ] and
x-ray [1,3,15,19-22] data. Field-induced conversion from Form Il to polar Form
Il and at still higher fields to Form | has also been demonstrated [1,3,15,20].
This latter transformation involives not only reorientation of molecular segments
in the crvstal phasa but also changes in conformation from tqtg to all trans.

With the strong evidence for field-induced reorientation of molecular divoles
in the crvstal phase of PVDF and the availabilitv of a thegretical model for
the piezoelectric and pvroelectric response we can now test the model with g

more complete set of data as oresented in this paper,

11. Theoretical Considerations

We assume that polar crystal lamellae in a film of PVDF become preferentially
aligned normal to tne plane of the film by the action 0of a larqe aopolied field.
The material is conductive enough (resistivity V10 72-cm) that ionic charges are
assumed to be mobile in the oresense of internal fields during poling and storage
of the films. A possible depoling process involving ionic mobility is depicted
schematically in Fig, 1, where the ionic charges are shown to move to the crvstal
surfaces producing a decrease in the polarization with time, Although the polari-
zation may completely vanish as shown (if sufficient carriers are available),
tha piezoelectric and pyroelectric coefficients (dD and py) do not, This is because
the moments due to charges and those due to dipoles change differently with

changes in temperature and pressure. The theory develaped from this model

e




by Broadhurst and co-workers [2] aives the following exnression for the surface
charge, Qg, on the short circuited conductive electrodes on the PVDF film:

Qs = LOV/3IN (e, + 2ugdy (o) + 02.] <cos ¢ >/ (1)

where N is the total number of dipoles, ec 15 the relative permittivity of the
polymer crystal, g is the amount of repeat unit in vacuum, Jo is the Bessel
function of order 2zero of the libration amplitude $os g is the sample thick-
ness or electrod3 separation, Q is the total countercharge separated by the
mean crystal length, ¢., and 8, is the angle between the crystal mement and the
axis normal to the film surface.

The change in electrode charge with applied mechanical or thermal stress is
found by taking the derivatives of eq. (1) with respect to that stress. The
experimental hydrostatic piezoelectric coefficient dp = A=! dQ/dp and pyrec-

electric coefficient, Py = A~1dQ/dT, where A is the electrode area, are given by:
dy = Py 5cl1/3(s 1) + 32y + W 3Ini/3ln Vip + (1-)(aln L/ 3 V)4 (2a)
Py = -Poacll/3(ec-1) + 6f (v + (2Ta )™")+ (2lne ¢/ An Ve)+(1-2)(alne /31n V)1l (2b)

where P = 1/3 o(c. + 2) Nugdy (8g) <cos 5,>/V,

(3)

is the remnant polarization obtained immediately after noling, ¢ is the volume

fraction crystallinity, 8¢ and a.are the crystal compressibility and thermal

expansion, v is the Gruneisen constant (- 5In w/ 3ln Vc )o, where w is the libra-

tion frequency; p is pressure; T is temperature;vc is the crystal volume and the
polarization from the ceuntercharge is assumed to be some fraction # between 0

and 1 of that from the dipoles. Egs. (2) have been made explicit by letting

Q= (1/3) aN(e_ + 2ugdy (9g)/2, (4)

The term ¢2 in eqs (2) results from the approximation ¢ = 2 J, (¢0)/J0(¢0)

where J1 is a first order Bessel function. Eas (2) can be evaluated over the

range from no countercharge (x= 0) to complete countercharge (4= 1),

e 5l wmk 'nmummmm.umuﬂ
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[n evaluating the derivatives involving . in eqs (2) we have assumed that
expansions along the polvmer backbone are negligible (in both \ and ® phases).
Thus the corresponding linear expansions from temperature and pressure changes
are 1./2 and 3./2 for which

_ {3ne /Aln Vc)T = (3n aC/)\n Vc)p + /2
Similarily, for the derivative involving lgr we have assumed linear expansiaons
corresponding toa /2 and 8/2. Thus:
(3In rg/aln Vo) = 34/8 ¢ (5a)

("‘n ‘QS/ Sn Vc)p = 15/2~J.C (Sb)

Eqs (2) can be evaluated for either Form [, oolar Form I or mixtures of
the two if the volume fractions, and expansion data are known, Recently, x-ray
compressibiiritiaes have become available for both Form I and Form Il c¢rvstals [24].
For Form 11 PVDF, using the values v, = 4.2 x 107" Ko = N7 x 107,
Je ® 2,39 x 1077 Pyt and s = 1.1 x 1071 from Table 1 of Ref. 2, we obtain
1,09 and 1.24 for the values of the derivatives given by eq. {Sa' and (5b),
respectively. Not all of the corresponding physical constants for form [ are
available but one might expect the values of ratios in Eqs. 5 to be similar for

di fferent forms of the same polymer,

Exggrimental
The chamber used to generate plasma for the poling process was adaoted

from a commercial plasma cleaner, The electrode assembly, mounted on the face
plate, is shown schematically in Fig. 2. It was made of polystryene because of
its apparent durability and superior electrical properties. An aluminum elec-
trode 2.5 &m in diameter is evaporated on one side of the 25 um thick polymer
film. The sample is clamped as shown with the non-metaiized side exposed t:

the plasma. The purpose of the aluminum electrode is to insure homogeneous elec-

trical contact with the electrode assembly. The chamber (containing air) is

e e e e i e it et i bt g
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evacuated to, and mairtain. . at, about 200 mT for the poling process. Water

vapor and other condensable gases are removed with a liquid nitrogen trap.

Voltages up to 10 kV may be applied across the plasma generator between the

electrodes as shown in Fig., 3. It is assumed that essentially all of the potential
drop from the grounded grid to the high potential eavaporated electrode occurs
across the specimen because of the high conductivity of the plasma relative to

the specimen. The charge transfer is measured with a charge amplifier in series
with the high voltage power supply as shown schematically in Fig., 3, The amount

of charge is a measure of the polarization during the poling process and the

i tienll PR fm“ . \ ol P

remnant polarization which remains after removal of the electric field, The
polarity of the high voltage supply produces a positively charged plasma as shown ;?

in Fig, 3. When the polarity was reversed there was no apparent influence on

pr—

the magnitude of polarization. The effect of electrical leakage on the determination

of polarization was found to be negligible over the short poling times used.

{

In this work the applied field is taken as the average field, which is the applied i
_ voltage shown in Fig, 3 divided by the specimen thickness. § 
g After the specimen is poled, a graphite electrode (from colloidal graphite in ;‘
5 water) is painted on the non-metallized side of each specimen. The electrodes are %
shorted, and the specimens are stored for at least 12 hours to stabilize discharae T
currents which come from the specimen. The piezoelectric coefficient dg is then g

measured in a pressure cell [23] employing a current ampiifier and imposing nearly
constant rates of pressure change (both pressurization and depressurization). From

the slopes of the pressure-time curves and the corresponding current, dp is determined. 2

i In an analogous manner the pyroelectric current resulting from nearly constant rates

-

of temperature change (both heating and cooling) is measured using the same cel}
in the neighborhood of room temperature. To reduce the effects of temperature and

pressure dependent background currents, we used the difference between the

I e

current for rising pressure or temperature and that for falling pressure or

temperature measured at the same pressure or temnerature, The response measured 1
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in this wav included on'y reversible currents and is independent of background
currents such as the release of stored charge followina poling, and currents
resulting f an electrode-polymer reactions, Thermallv stimulated currents are
not present during the measurements since the temperature cycling is done at

temperatures near the storaqe temperature of the films,

RESULTS

The remnant polarization is a consequence of irreversible response manifested
by nysteresis loons of the kind shown of Fig, -+, whera the nolarization P, is
plotted against the applied field, Z. This data was obtained by manuaily varving
the voltage between -5 and 5 kV at essentialiv constant rates approximating
= 5300 Vv/s. At the ordinate crossovers the power surply terminals were reversaq
rapidly such that significant relaxations were not nossible. As mentioned earlier
the polarization is determined from the measurement of the charge transfer. With
the rate given above, the leakage current has an insignificant effect. Initiallv,
the response is very unstable, as indicated, and often breakdown ocours oramazurely
at low fields, Arter the first cycle, however, the response is verv smooth,
symmetrical, and reproducible (but not reversible) even though there are some
small variations in the rates at which the voltage is chanaed. In this case
the applied field is not high enough to reach saturation, however, the response
appears to begin to level off at the high fields.

In order to obtain a more quantitative evaluation of the quantities to be
determined, the specimens were poled using step function fields at various levels.
The total charge transfer is measured by the integrating circuit mentioned earlier.
The leakage current may be determined by measuring the slope of the charge-time
curves at large times where the response is essentially linear with time., Fig. &
illustrates an example of these results where the polarization at 5 kV is plotted
as a function of time. The value of the remnant pelarization Py is taken as

the apparent steady state after the removal of the apolied field. Although it




is mentioned earlier in this paper that P may relax, or even vanish, as a consequence'
of real charge transfer to the crystal-liquid interfaces, these relaxation times

are much longer than the time scale of Fig. 5. The straight line with small

positive slope at the bottom of the figure corresponds to the leakage current

from which the value of resistivity ~ = 6.2 x 10'* 2 - an is obtained. The
corresponding leakage charge was subtracted from the total to obtain the polari-
zation during the poling process as shown, The aoplied field, 1.97 MV/cm, is

the average value for the specimen of thickness 25 um. Note that only 5 seconds

are required to reach 95% of the polarization achieved after 60 seconds for this

value of the field. These results are similar to those reported by Southgate [8].

Using the step function polarization process a set of data was obtained
at various applied fields. The results are tabulated in Table 1 and illustrated
in Figq, 6; where P, is plotted against the applied field, E. The scatter in
the data at constant field, in particular at 2 MV/cm, is attributed to the dif-
ferent poling times used and sample variation. (Each point pertains to a different
specimen.) The numbers in the left hand column of Table [ identify the points
“in Fig. 5 and other figures aopearing later which depict corresponding pniezo-
and pyroelectric data. According to the data of Fig. 6, a threshold field of
about 1 MV/cm is necessary before significant values of P, are obtained. Below
this value the response (P‘versus E) is reversible as indicated by single valued
response curves observed at low fields.

According to the theory of Broadhurst and co-workers [2] the piezo- and
pyroelectric coefficients are linear functions of the remnant polarization. These
coefficients, dp and py are plotted with respect to P, in Figs. 7 and 8, respectively,
and tabulated in Table 1. The solid lines illustrate the predictions for no counter-
charge and for full countercharge as ipdicated. The values lie nearer to the
no-countercharae prediction, possibly indicating a lack of sufficient countercharge
to build up a significant moment obposite that due to dipoles. Data of Southgate

(8] for similar PVDF films of different thickness and poled by corona discharqe

)
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are included in Fiq. 8. Southgate's data give smalier values of py than ours,
especially at higher polarization. Experimental and calculated linear coefficients
are given in Table II, which shows that the data support the predictions made
without including countercharge and within the stated uncertainties. The apparent
leveling-off of Southgate's Py values at higher polarizations is not predicted

by the theory and may reflect errors in polarization due to accumulation of con-
duction charges at high poling fields, where the conductance is non-ohmic, and,
from observations in our laboratory, increases with time prior to breakdown of

the specimen,

Both the piezs- and pyroelectric coefficients are determined with a single
specimen loading using the same apparatus [23]. The only distinction in the
procedure is in the application of changes ir the independent variables, temperature
and pressure. For this reason, along with the fact that these coefficients appear
to be nearly prooortional to the remnant polarization it is reasonable to assume
that the infiuence of possible systematic errors, in particular in the measurement
of polarization, will be reduced when plotting one of these coefficients with
raspect to the other,

The results of the comparison between dy and py are presented in Fig. 9,
where dp {s plotted against py’ and the results of tnhe data fit are given in
Table I]. The theoretical line is determined from £gs (2), using the average
of the results for « = 1 and ~ = 0. The influence of countercharge is suppressed
in this manner of presentation because the slope of .507 K/MPa differs by only
0.2. for the two extreme cases. The experimental line is taken from a linear
least square fit on the data in Table 1 shown as solid circles in Fig. 8. In
this case the fit on the data is constrained to the condition that the curve
pass through the origin, since inactive specimens gave no detectable response
to either temperature or prassure changes and represented data at 0, O having
a very smal’® wuncertainty. Although the agreement between theory and experiment
seems to be improved with this presentation, the theoretical slooe of 0.50 K/MPa

1s 13% hijher than the experimental one, 0.44,
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CONCLUSIONS

Polyvinylidene fluoride can be given a permanent polarization by application
of D0.C. electric fields greater than 1 MN/cm for a few seconds. A plasma of air
at appropriately low pressures makes an effective electrode for this purpose,

The resulting specimens have polarizations and piezoelectric and pyroelectric

? coefficients which are consistent with a model of aligned polar crystals which

change polarization mainly under the influence of thermally and mechanically

LA

induced stress,
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TABLE 1

Summary of

Experimental Data

E Po . dp Py,
MV/em | L C/cm” pC/N~  nC/cm” K
1.18 0.59 0.52 -
1.57 2.49 6.2 1.47
1.97 3.72 8.4 2.02
1.97 4.05 6.7 1.61
1.97 5.06 10.4 2.45
1.97 5.48 11.2 2.44
2.76 §.98 13.2 2.87
2.36 6.13 11.8 2.86
2.76 7.58 14.3 2.90




TABLE 11

Results of Fitting data to y = ax + b and Predicted Results

: Experimental®

L

o e ST e R e e e T T O b

y X a b Std. Dev. iny

; d P, 1.96 + 0.17(x1071%) m2N~'Pa-! 0.23 + 0.87 peN~! 1.0 pC/N

é, dy P, 2.00 ¢ 0.06(x.0"'°%) m3N"!pPa~! 0.98 pC/N

% Py Po 0.33 £ 0.06(x1073)K"! 0.66 + 0.30 nC cm™K"! 0.24 nCem™ K|

é b, Po 0.45 + 0.02(x1073)K"! 0.30 nCem=2K!

; 4 », 0.50 = 0.05(x10°5)K Pa-! 1,35 + 1.24 pCN! 0.79 pC/N

i d, Py 0.44 = 0.01(x107%)K Pa~! 0.80 oC/N

3 Values of a Calculated From Theory++ "

: No Countercharge Full Countercharge i

3 dy P, 2.1 + 0.6(x10710) pa~! 1.5 + 0.4(x10712) pa~! ?
oy P, 0.42 + 0.13(x1073) K™ 0.30 = 0.09(x10"2)k"! ]
4 b, 0.50 + 0.15(x1076) K Pa™! 0.50 + 0.15(x1078)K Pa“! )

3, W o

R IXRE

*,  Ordinary - 1inear regression assuming certainty in x. Uncertainties
in coefficients represent their standard deviations. Fits with
b = o0 are forced through 0, 0. Assuming certainty in y gave
similar results.

[t T

**  Estimated 30% uncertainties are due to approximation in the theory
and uncertainties in the data used to evaluate the theoretical
expressions.
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Figure Captions

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

1:

~N O v e W N

Schematic illustration of ionic mobility after poling and its con-
sequences on pclarization and pie20- and pyroelectric coefficients.

Schematic drawing of poling electrode assembly.

Schematic diagram of poling and monitoring circuit.

Hysteresis looo obtained from alternating field.

Time dependent response to steo function field - on and off.

Values of remnant polarization plotted against poling field for PVDF,

Piezoelectric coefficient versus polarization. The solid lines are

the theoretical predictions for no countercharge and full countercharce.

Pyroelectric coefficient versus remnant polarization. Open circles -
our data., Closed circles - Ref, 8,

Piezoelectric versus pyroelectric coefficients. The influence of
countercharge essentially converges to single values as indicated by
the theoretical 1ine, The experimental line is obtained from a
linear regression of the data with the intercept fixed at the origin.
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Figure 9
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